15 Mei 2009

PEMBIASAN CAHAYA

Pembiasan cahaya adalah pembelokan cahaya ketika berkas cahaya melewati bidang batas dua medium yang berbeda indeks biasnya. Indeks bias mutlak suatu bahan adalah perbandingan kecepatan cahaya di ruang hampa dengan kecepatan cahaya di bahan tersebut. Indeks bias relatif merupakan perbandingan indeks bias dua medium berbeda. Indeks bias relatif medium kedua terhadap medium pertama adalah perbandingan indeks bias antara medium kedua dengan indeks bias medium pertama. Pembiasan cahaya menyebabkan kedalaman semu dan pemantulan sempurna.

1. Persamaan indeks bias mutlak

Indeks Bias

2. Hukum Pembiasan Cahaya

Hukum Pembiasan Cahaya

Lensa adalah peralatan sangat penting dalam kehidupan manusia. Mikroskop menggunakan susunan lensa untuk melihat jasad-jasad renik yang tak terlihat oleh mata telanjang. Kamera menggunakan susunan lensa agar dapat merekam obyek dalam film. Teleskop juga memanfaatkan lensa untuk melihat bintang-bintang yang jaraknya jutaan tahun cahaya dari bumi.

Kuat lensa berkaitan dengan sifat konvergen (mengumpulkan berkas sinar) dan divergen (menyebarkan sinar) suatu lensa. Untuk Lensa positif, semakin kecil jarak fokus, semakin kuat kemampuan lensa itu untuk mengumpulkan berkas sinar. Untuk Lensa negatif, semakin kecil jarak fokus semakin kuat kemampuan lensa itu untuk menyebarkan berkas sinar. Oleh karenanya kuat lensa didefinisikan sebagai kebalikan dari jarak fokus.

Rumus Kuat Lensa :

Kuat Lensa

Pembentukan Bayangan Pada Lensa :

Bayangan Pada Lensa

Lensa Gabungan :

Lensa Gabungan

HUKUM COULOMB

Hukum Coulomb, kadang-kadang disebut hukum Coulomb, adalah satu persamaan yang menggambarkan kekuatan elektrostatik antara muatan elektrik yang terpisahkan jarak tertentu, degan nilai muatan dan jarak pisah keduanya. Dikembangkan pada 1780-an oleh ahli ilmu fisika Perancis Charles Augustin de Coulomb yang merupakan orang penting pada pengembangan teori keelektromagnetan. Hukum Coulomb dapat dinyatakan sebagai berikut:

Gaya

Dimana r adalah jarak antara kedua titik dan Keadalah konstanta Coulomb, gaya tarik menarik akan terjadi jika kedua muatan (q1 dan q2) berbeda jenis dan akan tolak-menolak jika kedua muatan sama.

Kontanta Coulomb Konstantadapat dijabarkan sebagai berikut:


Kontanta Coulomb=Penjabaran (1)

= Penjabaran (2)

= Penjabaran (3)

= Penjabaran (4)

Dalam satuan SI, kelajuan cahaya di dalam ruang hampa, c0 didefinisikan sebagai 299,792,458 m · s-1, dan konstanta magnetik (µ0), didefinisikan sebagai 4π × 10-7 H · m-1, mengacu definisi untuk ketetapan elektrik (ε 0) dengan ε0 = Trakirrrr..≈ 8.854 187 817 × 10−12 F · m−1. Pada aturan cgs, konstanta Coulomb ditetapkan adalah 1.

13 April 2009

Alat Optik

ALAT OPTIK

A. LUP

Lup (kaca pembesar) adalah alat optik yang terdiri dari sebuah lensa cembung.

Fungsinya, untuk melihat benda benda kecil.

Sifat bayangannya maya, tegak, diperbesar.

Perbesaran Lup Untuk Mata Berakomodasi Dengan Jarak x :

Perbesaran Lup Untuk Mata Berakomodasi Dengan Jarak X

Perbesaran Lup untuk Mata Berakomodasi Maksimum :

Perbesaran Lup Untuk Mata Berakomodasi Maksimum

Perbesaran Lup Untuk Mata Tidak Berakomodasi :

Perbesaran Lup Untuk Mata Tidak Berakomodasi

B. MIKROSKOP

Sifat Bayangan:

- Lensa Objektif: Nyata, terbalik, diperbesar

- Lensa Okuler: Nyata, terbalik, diperbesar.

Jarak Fokus Untuk Lensa Objektif :

Jarak Fokus Untuk Lensa Objektif

Jarak Fokus Lensa Okuler :

Jarak Fokus Lensa Okuler

Perbesaran pada Mikroskop

M = Mob x Mok

C. TEROPONG


1. Teropong Bintang

Sifat bayangan: maya, terbalik, diperbesar.

Perbesaran bayangannya:

Perbesaran Bayangan

2. Teropong Bumi

Sifat bayangan: maya, tegak,diperbesar.

Perbesaran bayangannya:

Perbesaran Bayangan

Pembiasan Cahaya

PEMBIASAN CAHAYA

Pembiasan cahaya adalah pembelokan cahaya ketika berkas cahaya melewati bidang batas dua medium yang berbeda indeks biasnya. Indeks bias mutlak suatu bahan adalah perbandingan kecepatan cahaya di ruang hampa dengan kecepatan cahaya di bahan tersebut. Indeks bias relatif merupakan perbandingan indeks bias dua medium berbeda. Indeks bias relatif medium kedua terhadap medium pertama adalah perbandingan indeks bias antara medium kedua dengan indeks bias medium pertama. Pembiasan cahaya menyebabkan kedalaman semu dan pemantulan sempurna.

1. Persamaan indeks bias mutlak

Indeks Bias

2. Hukum Pembiasan Cahaya

Hukum Pembiasan Cahaya

Lensa adalah peralatan sangat penting dalam kehidupan manusia. Mikroskop menggunakan susunan lensa untuk melihat jasad-jasad renik yang tak terlihat oleh mata telanjang. Kamera menggunakan susunan lensa agar dapat merekam obyek dalam film. Teleskop juga memanfaatkan lensa untuk melihat bintang-bintang yang jaraknya jutaan tahun cahaya dari bumi.

Kuat lensa berkaitan dengan sifat konvergen (mengumpulkan berkas sinar) dan divergen (menyebarkan sinar) suatu lensa. Untuk Lensa positif, semakin kecil jarak fokus, semakin kuat kemampuan lensa itu untuk mengumpulkan berkas sinar. Untuk Lensa negatif, semakin kecil jarak fokus semakin kuat kemampuan lensa itu untuk menyebarkan berkas sinar. Oleh karenanya kuat lensa didefinisikan sebagai kebalikan dari jarak fokus.

Rumus Kuat Lensa :

Kuat Lensa

Pembentukan Bayangan Pada Lensa :

Bayangan Pada Lensa

Lensa Gabungan :

Lensa Gabungan

CaHaYa

CAHAYA

Cahaya merupakan sejenis energi berbentuk gelombang elektromagnetik yang bisa dilihat dengan mata. Cahaya juga merupakan dasar ukuran meter: 1 meter adalah jarak yang dilalui cahaya melalui vakum pada 1/299,792,458 detik. Kecepatan cahaya adalah 299,792,458 meter per detik.

Cahaya

Cahaya diperlukan dalam kehidupan sehari-hari. Matahari adalah sumber cahaya utama di Bumi. Tumbuhan hijau memerlukan cahaya untuk membuat makanan.

Sifat-sifat cahaya ialah, cahaya bergerak lurus ke semua arah. Buktinya adalah kita dapat melihat sebuah lampu yang menyala dari segala penjuru dalam sebuah ruang gelap. Apabila cahaya terhalang, bayangan yang dihasilkan disebabkan cahaya yang bergerak lurus tidak dapat berbelok. Namun cahaya dapat dipantulkan .

Teori tentang cahaya

Teori abad ke-10

Ilmuwan Abu Ali Hasan Ibn Al-Haitham (965–sekitar 1040), dikenal juga sebagai Alhazen, mengembangkan teori yang menjelaskan penglihatan, menggunakan geometri dan anatomi. Teori itu menyatakan bahwa setiap titik pada daerah yang tersinari cahaya, mengeluarkan sinar cahaya ke segala arah, namun hanya satu sinar dari setiap titik yang masuk ke mata secara tegak lurus yang dapat dilihat. Cahaya lain yang mengenai mata tidak secara tegak lurus tidak dapat dilihat. Dia menggunakan kamera lubang jarum sebagai contoh, yang menampilkan sebuah citra terbalik. Alhazen menganggap bahwa sinar cahaya adalah kumpulan partikel kecil yang bergerak pada kecepatan tertentu. Dia juga mengembangkan teori Ptolemy tentang refraksi cahaya namun usaha Alhazen tidak dikenal di Eropa sampai pada akhir abad 16.

Teori Partikel

Isaac Newton menyatakan dalam Hypothesis of Light pada 1675 bahwa cahaya terdiri dari partikel halus (corpuscles) yang memancar ke semua arah dari sumbernya. Teori ini dapat digunakan untuk menerangkan pantulan cahaya, tetapi hanya dapat menerangkan pembiasan dengan menganggap cahaya menjadi lebih cepat ketika memasuki medium yang padat tumpat karena daya tarik gravitasi lebih kuat.

Teori Gelombang (atau Ray)

Christiaan Huygens menyatakan dalam abad ke-17 yang cahaya dipancarkan ke semua arah sebagai ciri-ciri gelombang. Pandangan ini menggantikan teori partikel halus. Ini disebabkan oleh karena gelombang tidak diganggu oleh gravitasi, dan gelombang menjadi lebih lambat ketika memasuki medium yang lebih padat. Teori gelombang ini menyatakan bahwa gelombang cahaya akan berinterferensi dengan gelombang cahaya yang lain seperti gelombang bunyi (seperti yang disebut oleh Thomas Young pada kurun ke-18), dan cahaya dapat dipolarisasikan. Kelemahan teori ini adalah gelombang cahaya seperti gelombang bunyi, memerlukan medium untuk dihantar. Suatu hipotesis yang disebut luminiferous aether telah diusulkan, tetapi hipotesis itu tidak disetujui.

Teori Elektromagnetik

Pada 1845 Faraday menemukan bahwa sudut polarisasi dari sebuah sinar cahaya ketika sinar tersebut masuk melewati material pemolarisasi dapat diubah dengan medan magnet.Ini adalah bukti pertama kalau cahaya berhubungan dengan Elektromagnetisme. Faraday mengusulkan pada tahun 1847 bahwa cahaya adalah getaran elektromagnetik berfrekuensi tinggi yang dapat bertahan walaupun tidak ada medium.

Teori ini diusulkan oleh James Clerk Maxwell pada akhir abad ke-19, menyebut bahwa gelombang cahaya adalah gelombang elektromagnet sehingga tidak memerlukan medium untuk merambat. Pada permukaannya dianggap gelombang cahaya disebarkan melalui kerangka acuan yang tertentu, seperti aether, tetapi teori relativitas khusus menggantikan anggapan ini. Teori elektromagnet menunjukkan yang sinar kasat mata adalah sebagian daripada spektrum elektromagnet. Teknologi penghantaran radio diciptakan berdasarkan teori ini dan masih digunakan.

Kecepatan cahaya yang konstan berdasarkan persamaan Maxwell berlawanan dengan hukum-hukum mekanis gerakan yang telah bertahan sejak zaman Galileo, yang menyatakan bahwa segala macam laju adalah relatif terhadap laju sang pengamat. Pemecahan terhadap kontradiksi ini kelak akan ditemukan oleh Albert Einstein.

Teori Kuantum

Teori ini di mulai pada abad ke-19 oleh Max Planck, yang menyatakan pada tahun 1900 bahwa sinar cahaya adalah terdiri dari paket (kuantum) tenaga yang dikenal sebagai photon. Penghargaan Nobel menghadiahkan Planck anugerah fisika pada 1918 untuk kerja-kerjanya dalam penemuan teori kuantum, walaupun dia bukannya orang yang pertama memperkenalkan prinsip asas partikel cahaya.

Teori Dualitas Partikel-Gelombang

Teori ini menggabungkan tiga teori yang sebelumnya, dan menyatakan bahwa cahaya adalah partikel dan gelombang. Ini adalah teori modern yang menjelaskan sifat-sifat cahaya, dan bahkan sifat-sifat partikel secara umum. Teori ini pertama kali dijelaskan oleh Albert Einstein pada awal abad 20, berdasarkan dari karya tulisnya tentang efek fotolistrik, dan hasil penelitian Planck. Einstein menunjukkan bahwa energi sebuah foton sebanding dengan frekuensinya. Lebih umum lagi, teori tersebut menjelaskan bahwa semua benda mempunyai sifat partikel dan gelombang, dan berbagai macam eksperimen dapat di lakukan untuk membuktikannya. Sifat partikel dapat lebih mudah dilihat apabila sebuah objek mempunyai massa yang besar.

Pada pada tahun 1924 eksperimen oleh Louis de Broglie menunjukan elektron juga mempunyai sifat dualitas partikel-gelombang. Einstein mendapatkan penghargaan Nobel pada tahun 1921 atas karyanya tentang dualitas partikel-gelombang pada foton, dan de Broglie mengikuti jejaknya pada tahun 1929 untuk partikel-partikel yang lain.


Panjang Gelombang Tampak

Cahaya tampak adalah bagian spektrum yang mempunyai panjang gelombang antara lebih kurang 400 nanometer (nm) dan 800 nm (dalam udara).

Rumus kecepatan-cahaya

v = λf,

Dimana λ adalah panjang gelombang, f adalah frekuensi, v adalah kecepatan cahaya. Kalau cahaya bergerak di dalam vakum, jadi v = c, jadi

c = λf,

di mana c adalah laju cahaya. Kita boleh menerangkan v sebagai

Rimus Kecepatan Cahaya

di mana n adalah konstan (indeks biasan) yang mana adalah sifat material yang dilalui oleh cahaya.

Sejarah pengukuran kelajuan cahaya

Kelajuan cahaya telah sering diukur oleh ahli fisika. Pengukuran awal yang paling baik dilakukan oleh Olaus Roemer (ahli fisika Denmark), dalam 1676. Beliau menciptakan kaedah mengukur kelajuan cahaya. Beliau mendapati dan telah mencatatkan pergerakan planet Saturnus dan satu dari bulannya dengan menggunakan teleskop. Roomer mendapati bahwa bulan tersebut mengorbit Saturnus sekali setiap 42-1/2 jam. Masalahnya adalah apabila Bumi dan Saturnus berjauhan, putaran orbit bulan tersebut kelihatan bertambah. Ini menunjukkan cahaya memerlukan waktu lebih lama untuk samapai ke Bumi. Dengan ini kelajuan cahaya dapat diperhitungkan dengan menganalisa jarak antara planet pada masa-masa tertentu. Roemer mendapatkan angka kelajuan cahaya sebesar 227,000 kilometer per detik.

Mikel Giovanno Tupan memperbaiki hasil kerja Roemer pada tahun 2008. Dia menggunakan cermin berputar untuk mengukur waktu yang diambil cahaya untuk bolak-balik dari Gunung Wilson ke Gunung San Antonio di California. Ukuran jitu menghasilkan kelajuan 299,796 kilometer/detik. Dalam penggunaan sehari-hari, jumlah ini dibulatkan menjadi dan 300,000 kilometer/detik.


Warna dan Panjang Gelombang

Panjang gelombang yang berbeda-beda diinterpretasikan oleh otak manusia sebagai warna, dengan merah adalah panjang gelombang terpanjang (frekuensi paling rendah) hingga ke ungu dengan panjang gelombang terpendek (frekuensi paling tinggi). Cahaya dengan frekuensi di bawah 400 nm dan di atas 700 nm tidak dapat dilihat manusia. Cahaya disebut sebagai sinarultraviolet pada batas frekuensi tinggi dan inframerah (IR atau infrared) pada batas frekuensi rendah. Walaupun manusia tidak dapat melihat sinar inframerah kulit manusia dapat merasakannya dalam bentuk panas. Ada juga camera yang dapat menangkap sinar Inframerah dan mengubahnya menjadi sinar tampak. Kamera seperti ini disebut night vision camera

Radiasi ultaviolet tidak dirasakan sama sekali oleh manusia kecuali dalam jangka paparan yang lama, hall ini dapat menyebabkan kulit terbakar dan kanker kulit. Beberapa hewan seperti lebah dapat melihat sinar ultraviolet, sedangkan hewan-hewan lainnya seperti Ular Viper dapat merasakan IR dengan organ khusus.

07 April 2009

PENCERMINAN

PENCERMINAN

1. Cermin Datar

  • Jarak bayangan ke cermin = jarak benda ke cermin.
  • Tinggi bayangan = tinggi benda.
  • Bayangan bersifat maya, tegak, dan di belakang cermin.

2. Cermin Cekung

Untuk dapat melukis bayangan yang dibentuk oleh cermin cekung, biasanya digunakan tiga sinar istimewa. Sinar istimewa sinar datang yang lintasannya mudah diramalkan tanpa harus mengukur sudut datang dan sudut pantulnya. Tiga sinar istimewa itu adalah:

1. Sinar yang melalui pusat kelengkungan cermin akan dipantulkan melalui pusat kelengkungan itu lagi.

Sinar Istimewa Cermin Cekung

2. Sinar yang datang sejajar sumbu utama akan dipantulkan melalui fokus utama.

Sinar Istimewa Cermin Cekung (2)

3. Sinar yang datang melalui fokus utama akan dipantulkan sejajar sumbu utama.

Sinar Istimewa Cermin Cekung (3)

3. Cermin Cembung

Sama dengan cermin cekung, cermin cembung juga mempunyai tiga sinar istimewa. Karena jarak fokus dan pusat kelengkungan cermin cembung berada di belakang cermin maka ketiga sinar istimewa pada cermin cembung tersebut adalah:

1. Sinar yang datang menuju pusat kelengkungan akan dipantulkan kembali.

Sinar Istimewa Cermin Cembung (1)

2. Sinar yang datang sejajar sumbu utama akan dipantulkan seolah - olah dari titik fokus.

Sinar Istimewa Cermin Cembung (2)

3. Sinar yang datang menuju fokus akan dipantulkan sejajar sumbu utama.

Sinar Istimewa Cermin Cembung (3)

Hubungan jarak benda (s), jarak fokus (f), dan jarak bayangan (s’)

Rumus Jarak Bayangan

atau

Rumus Jarak Benda (2)

dengan:

f : jarak fokus cermin (m)

s : jarak benda ke cermin (m)

s’ : jarak bayangan ke cermin (m)

R : pusat kelengkungan cermin (m)


Perbesaran Bayangan Pada Cermin

Perbesaran Dengan Mutlak

dengan :

M : perbesaran bayangan

h’ : tinggi bayangan benda

h : tinggi benda

s’ : jarak bayangan benda ke cermin

s : jarak benda ke cermin


Contoh Soal:

Sebuah benda berdiri tegak 10 cm di depan cermin cembung yang mempunyai titik fokus 30 cm. Jika tinggi benda 2 m, maka tinggi bayangan yang terbentuk dan besar perbesaran benda adalah…

Diketahui:

s = 10 cm

f = 30 cm

h = 2 m

Ditanya:

s’ = …

M = …

Jawab:

a)

Jawaban Nomor (1)

b)

Jawaban Nomor (b)